Al Tech Labs 0⇒1

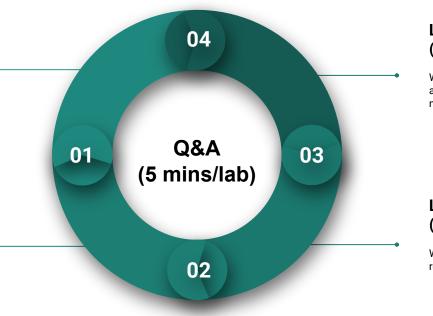
Jian Tao

jtao@tamu.edu

HPRC Short Course

10/30/2020

High Performance Research Computing DIVISION OF RESEARCH


AI Tech Labs

Lab I. JupyterLab (15 mins)

We will set up a Python virtual environment and run JupyterLab on the HPRC Portal..

Lab II. Data Exploration (30 mins)

We will go through simple examples with two popular Python modules: Pandas and Matplotlib for simple data exploration.

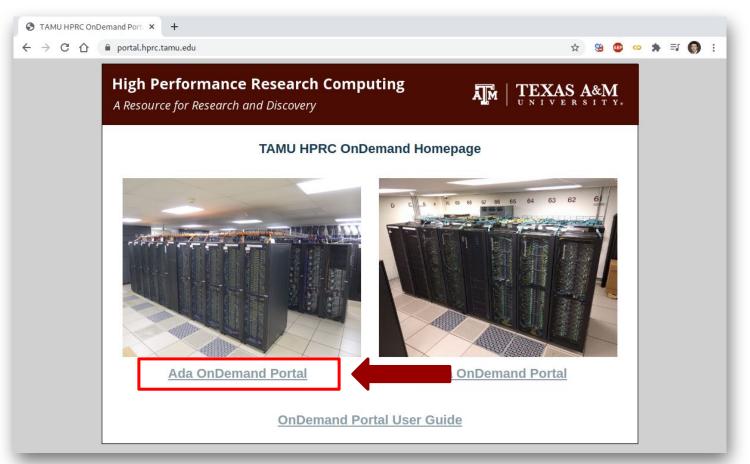
Lab IV. Deep Learning (30 minutes)

We will learn how to use Keras to create and train a simple image classification model with deep neural network (DNN).

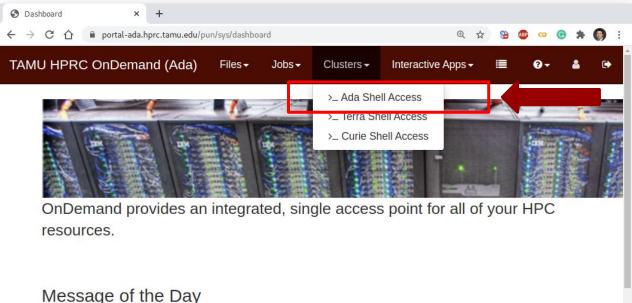
Lab III Machine Learning (30 minutes)

We will learn to use scikit-learn for linear regression and classification applications.

Lab I. JupyterLab


•	
jup	yter

Files	+ 🗈	± C		Console 1 X 🖲 Data.ipynb X 🖞 README.md X					
2	♠ > notebooks								
<u>B</u>	Name •	Last Modified	In this Notebook we explore t	In this Notebook we explore the Lorenz system of differential equations:					
Running	📃 Data.ipynb	an hour ago		$\dot{x} = \sigma(y - x)$					
Ř	Fasta.ipynb	a day ago		$\dot{y} = \rho x - y - xz$					
	Julia.ipynb	a day ago		$\dot{z} = -\beta z + xy$					
Commands	R.ipynb	seconds ago	Let's call the function once to	view the solutions. For this set of parameters, we see the trajectories swirling around two points,					
mm	iris.csv	a day ago a day ago	called attractors.	ven die soldtons, for this set of parameters, ne see die aujectones swining alound the points,					
Ö	(1) lightning.json	9 days ago							
	Iorenz.py	3 minutes ago	In [4]: from lorenz import solve						
ols	- Infenzipy	o minutes ugo	<pre>t, x_t = solve_lorenz(N=</pre>	(0)					
Cell 100IS			Output View ×	lorenz.py X					
Tabs			sigma — 10.00 beta _ 2.67 rho _ 28.00	<pre>9 def solve_lorenz(N=10, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0): 10 """Plot a solution to the Lorenz differential equations.""" 11 fig = plt.figure() 12 ax = fig.add_axes([0, 0, 1, 1], projection='3d') 13 ax.axis('off') 14</pre>					
				15 # prepare the axes limits					
				16 ax.set_xlim((-25, 25)) 17 ax.set_ylim((-35, 35))					
				18 ax.set_zlim((5, 55))					
				<pre>19 20 def lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho): 21 22 23 23 24 25 # Choose random starting points, uniformly distributed from -15 to 15 26 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20</pre>					


L1 - Resources

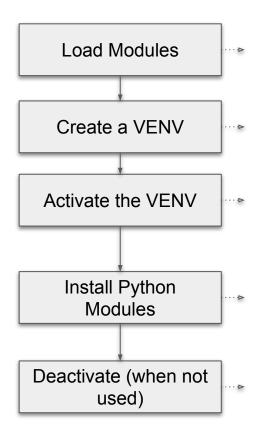
- Texas A&M High Performance Research Computing (HPRC)
- Ada Quick Start Guide
- HPRC Portal
- HPRC YouTube Channel
- Jupyter Project

L1 - Login HPRC Portal

L1 - Shell Access - I

** Ada Cluster Maintenance, September 29 **

The Ada cluster will be unavailable from 9am to 6pm on Tuesday, September 29th. Software and hardware maintenance will be performed during this downtime. Jobs will not be scheduled if they will overlap with this maintenance window.


IMPORTANT POLICY INFORMATION

https://portal-ada.hprc.tamu.edu/pun/sys/dashboard#

L1 - Shell Access - II

O Dashboard × S jtao@login8:~ × + 9 🐽 🚥 💿 🚖 👩 🗄 This computer system and the data herein are available only for authorized purposes by authorized users: use for any other purpose is prohibited and may result in administrative/disciplinary actions or criminal prosecution against the user. Usage may be subject to security testing and monitoring to ensure compliance with the policies of Texas A&M University, Texas A&M University System, and the State of Texas. There is no expectation of privacy on this sýstem except as otherwise provided by applicable privacy laws. Users should réfer to Texas A&M University <u>Standard Administrative Procedure 29.01.03.M0.02.</u> Rules for Responsible Computing, for guidance on the appropriate use of Texas A&M University information resources. Password: Duo two-factor login for jtao Enter a passcode or select one of the following options: 1. Duo Push to iPhone (iOS) 2. Duo Push to iPad (iOS) Passcode or option (1-2): 1 Success. Logging you in... Last login: Fri May 1 22:10:51 2020 from connect-172-31-38-197.vpn.tamu.edu Texas A&M University High Performance Research Computing Website: https://hprc.tamu.edu help@hprc.tamu.edu (preferred) or (979) 845-0219 Consulting: Ada Documentation: https://hprc.tamu.edu/wiki/Ada Curie Documentation: https://hprc.tamu.edu/wiki/Curie

L1 - Python Virtual Environment (VENV)

clean up and load Anaconda
cd \$SCRATCH
module purge
module load Anaconda/3-5.0.0.1

create a Python virtual environment
conda create -n mylab

activate the virtual environment
source activate mylab

install required package to be used in the portal
conda install jupyterlab=1.2.2
conda install pandas matplotlib
conda install scikit-learn
conda install tensorflow

deactivate the virtual environment
source deactivate

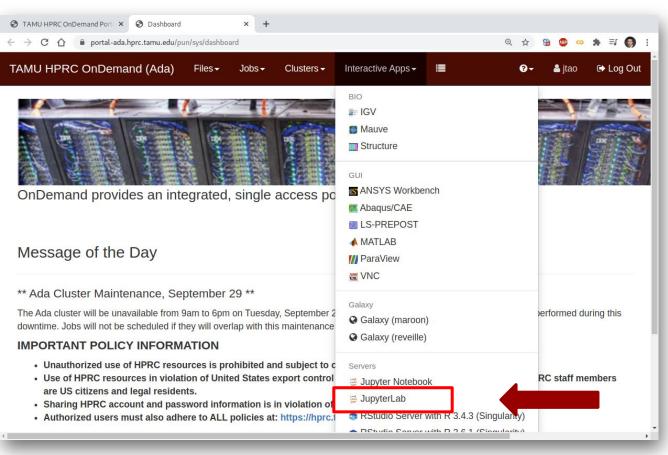
L1 - Common Anaconda Commands

Conda virtual environment conda info conda create -n VENV # create a virtual environment conda env list

show Conda installation conda create -n VENV python=3.4 # create a venv with a py version # list installed venv

Conda package management conda list conda search PACKAGENAME conda install PACKAGENAME conda update PACKAGENAME conda remove PACKAGENAME

list all installed packages **#** search a Conda package # install a Conda package # update a Conda package


remove a Conda package

install required package to be used in the portal conda install jupyterlab=1.2.2 conda install pandas matplotlib conda install scikit-learn conda install tensorflow

L1 - Check out Exercises

jtao / ailabs > Code ① Issues 『? Pull requests ④ Actions 『	Projects 🖽 Wiki 🛈 Security 🗠 Insights	atch → 1 ☆ Star 0 ♥ Fork 0
ξ ⁹ master → ξ ⁹ 1 branch 💿 0 tags	Go to file	About 8
jtao Update README.md	Clone (?) HTTPS SSH GitHub CLI	No description, website, or topics provided.
images rename the file.	https://github.com/jtao/ailabs.git 📋	🛱 Readme
README.md Update README.md	Use Git or checkout with SVN using the web URL.	
README.md	Download ZIP	Releases No releases published Create a new release
it clone (check out) the Juction of the Juction of the Juction of the Juction of the second second second second		labs

L1 - Go to JupyterLab Page

L1 - Set Virtual Environment

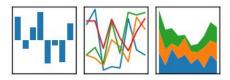
S JupyterLab × +		
← → C ①	.edu/pun/sys/dashboard/batch_connect/sys/jupyterlab/session_contexts/new	२ 🛧 😣 🚳 🗢 🗯 🗊 🌍 :
TAMU HPRC OnDemand (Ad	la) Files∓ Jobs∓ Clusters∓ Interactive Apps∓ 🗮	ଡ - 🕹 jtao 🕞 Log Out
Home / My Interactive Sess	ions / JupyterLab	
Interactive Apps	JupyterLab	
BIO		
IGV	This app will launch a JupyterLab server on the Ada cluster.	
Mauve	Module	
	Anaconda/3-5.0.0.1	
Structure	Anaconda/3- is Python3	
GUI		
S ANSYS Workbench	JupyterLab Environment to be activated	
Magus/CAE	mylab	
	Enter the name of environment to be activated. Changing this	
IS-PREPOST	field is optional.	
A MATLAB	Use the default jupyterlab_v1.2.2 unless you have installed your	
M ParaView	own JupyterLab conda Environment.	
	Your optional conda environment must have been previously	
Servers	built with one of the Anaconda modules listed in the Module	

L1 - Connect to JupyterLab

My Interactive Sessions x +							
← → C ☆ @ portal-ada.hprc.tamu.e	du/pun/sys/dashboard/bat	ch_connect/sessions				🗿 🐠 🚥	* = 🌒 :
TAMU HPRC OnDemand (Ada	a) Files - Job	s ← Clusters ←	Interactive Apps -		0-	å jtao	€ Log Out
Session was successfully created.							×
Home / My Interactive Sessions							
Interactive Apps	JupyterLab (1)	2695677)			1 node	1 core	Running
BIO	Host: nxt1735					-	Delete
IGV	Created at: 2020	-09-19 19:10:05 CD	т				Delete
Mauve	Time Used: 5 mi	nutes					
Structure	Session ID: e180	147a1-3d4f-4f15-b4	6d-bff5fa09174a				
GUI				_			
S ANSYS Workbench	Connect to 3	lupyterLab					
Maqus/CAE							,

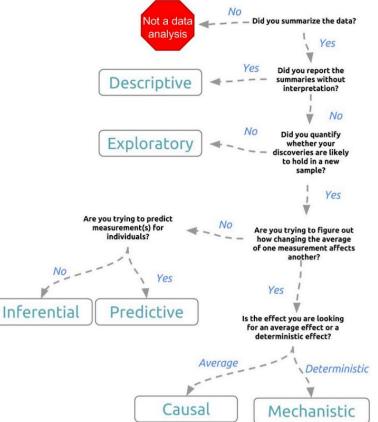
L1 - Create a Jupyter Notebook

S My Interactive Sessions x ⊂ JupyterLab x +									
~	→ C ① Portal-ada.hprc.tamu.e	du/node/nxt1735/64896/lab? 🗖 🔍 😭 🤓 🚥	\$ ≡	•	;				
0	File Edit View Run Kernel	Tabs Settings Help							
	+ 🖬 🛨 C	Z Launcher							
	/ shortcourses /				-				
ο	Name 🔺	shortcourses							
	Al_Tech_Lab								
	backup	Notebook							
	examples								
	Inter-CUDA								
	Intro-to-CUDA								
	Intro-to-Julia								
	Spark	Python 3							
	Spring								
		>_ Console							
		2			•				
0	s_ 1 @		La	u <mark>nc</mark> he	er				

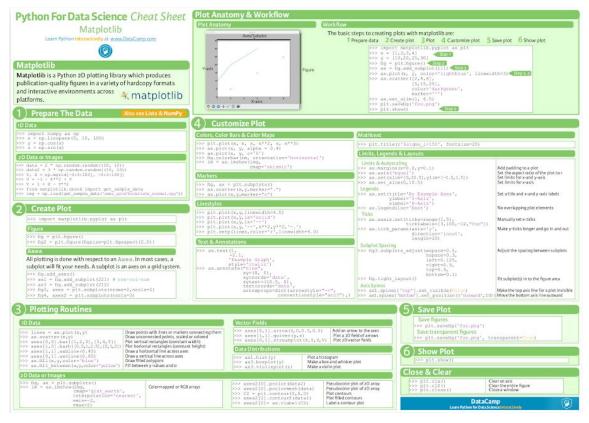

L1 - Test JupyterLab

0	My Interactive Sessions 🛛 🗙 📿 Jupy	erLab × +		
~	→ C A portal-ada.hprc.tamu	edu/node/nxt1735/64896/lab? 🗖 @ 🖈	🥸 💷 😳	* 🗊 🌍 🗄
0	File Edit View Run Kerne	Tabs Settings Help		
•	+ • I / shortcourses / Name Al_Tech_Lab backup backup examples Inter-CUDA Intro-to-CUDA Intro-to-Julia Spark Spring Untitled.ipynb	<pre> Untitled.ipynb × + % C Code ~ [1]: print("Hello World!" Hello World! []:</pre>		Python 3 O
				-
0	s_ 2 👜 Python 3 Idle	Mode: Command 🛞	Ln 1, Col 1	Untitled.ipynb

Lab II. Data Exploration



Types of Data Science Problems


- **Descriptive** (summaries, e.g., census)
- **Exploratory** (search for unknowns, e.g., SETI@home, Einstein@home)
- Inferential (find correlations, e.g., many social studies)
- Predictive (make predictions, e.g., Face ID, Echo, Siri)
- **Causal** (explore causation, e.g., smoking versus lung cancer)
- Mechanistic (determine governing principles,

e.g., experimental science)

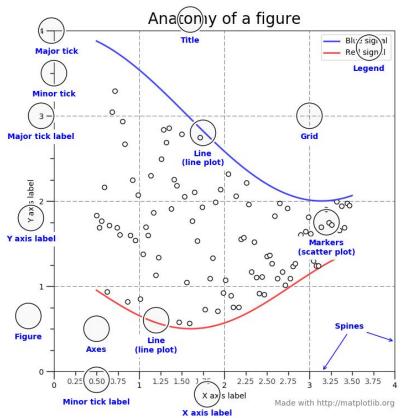
Credit: Jeff Leek - The Elements of Data Analytic Style

Matplotlib Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf

Key Plotting Concepts in Matplotlib

Matplotlib: Figure


Figure is the object that keeps the whole image output. Adjustable parameters include:

- 1. Image size (set_size_inches())
- 2. Whether to use tight_layout (set_tight_layout())

Matplotlib: Axes

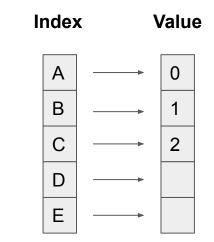
Axes object represents the pair of axis that contain a single plot (x-axis and y-axis). The Axes object also has more adjustable parameters:

- 1. The plot frame (set_frame_on() or set_frame_off())
- 2. X-axis and Y-axis limits (set_xlim() and set_ylim())
- X-axis and Y-axis Labels (set_xlabel() and set_ylabel())
- 4. The plot title (set_title())

(Credit: matplotlib.org)

Data Structures

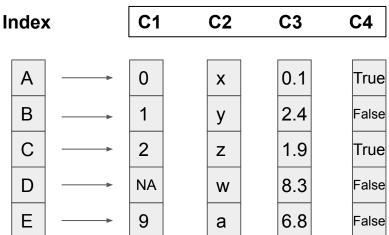
Pandas has two data structures that are descriptive and


optimized for data with different dimensions.

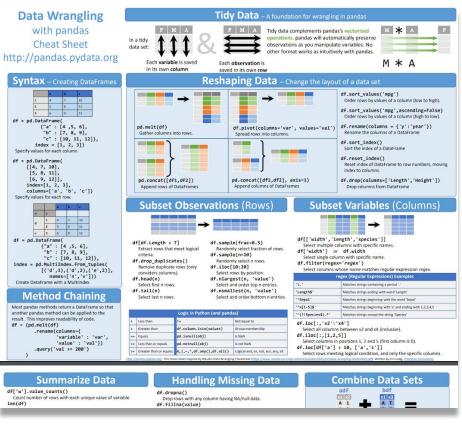
- Series: 1D labeled homogeneously-typed array
- **DataFrame:** General 2D labeled, size-mutable tabular

structure with potentially heterogeneously-typed columns

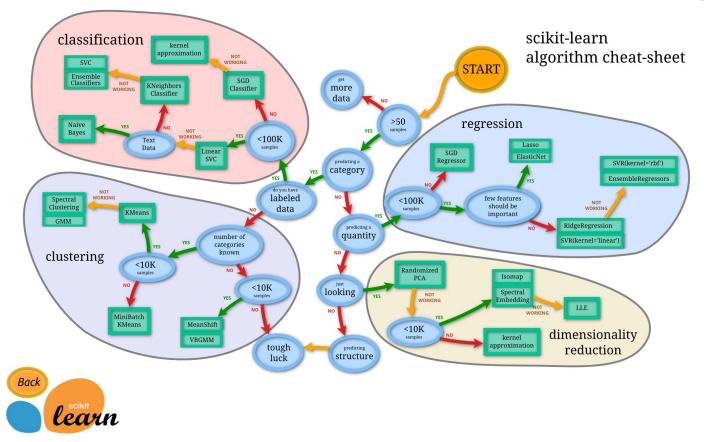
Series in pandas


"Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the index." - <u>pandas site</u>

DataFrame in pandas


"Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure." - <u>pandas site</u>

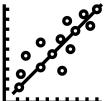
In [2]: d = {'col1': [1, 2], 'col2': [3, 4]}	Ir	nde
In [3]: df = pd.DataFrame(data=d)	Г	
In [5]: df.index		A
In [6]: df = pd.DataFrame(В
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),		С
columns=['a', 'b', 'c'])		D
	1 1	

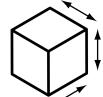

Columns

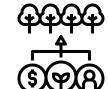
Pandas Cheat Sheet

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

Lab III. Machine Learning




Main Features of scikit-learn

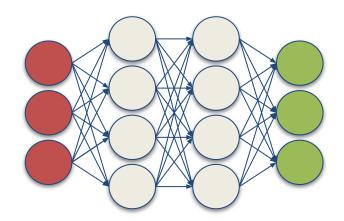


Classification	Regression	Clustering	Dimension Reduction	Model Selection	Preprocessing
Identifying category of an object	Predicting a attribute for an object	Grouping similar objects into sets	Reducing the number of dimensions	Selecting models with parameter search	Preprocessing data to prepare for modeling
Applications: Spam detection, image recognition. Algorithms: SVM, nearest neighbors, random forest, and more	Applications: Drug response, Stock prices. Algorithms: SVR, nearest neighbors, random forest, and more	Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, and more	Applications: Visualization, Increased efficiency Algorithms: k-Means, feature selection, non-negative matrix factorization, and more	Applications: Improved accuracy via parameter tuning Algorithms: grid search, cross validation, metrics, and more	Applications: Transforming input data such as text for use with machine learning algorithms. Algorithms: preprocessing, feature extraction, and more
				ଢ଼ଢ଼ଢ଼ଢ଼	<u>۲</u>

•

Jian Tao @ Texas A&M Engineering Experiment Station

Credit: icons are from The Noun Project under Creative Commons Licenses

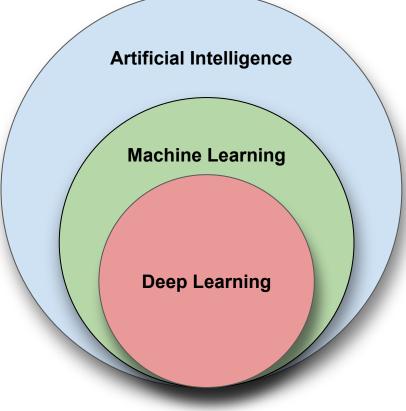

Lab IV. Deep Learning

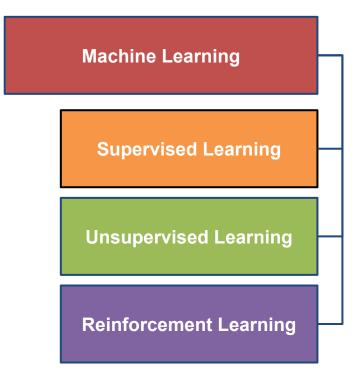
Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville <u>http://www.deeplearningbook.org/</u>

Animation of Neutron Networks

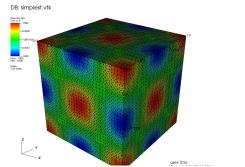
by Grant Sanderson https://www.3blue1brown.com/

Visualization of CNN by Adam Harley https://www.cs.ryerson.ca/~aharley/vis/conv/

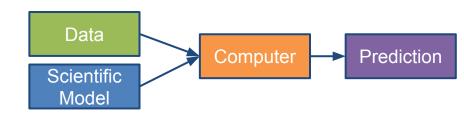


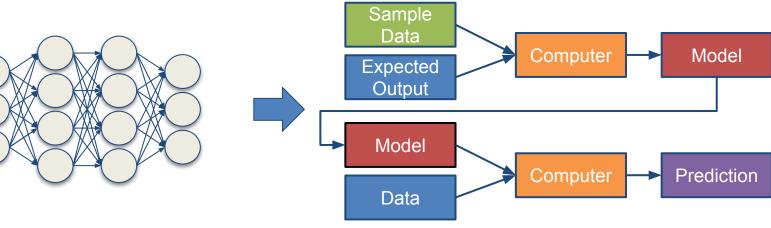

Relationship of AI, ML, and DL

- Artificial Intelligence (AI) is anything about man-made intelligence exhibited by machines.
- Machine Learning (ML) is an approach to achieve AI.
- Deep Learning (DL) is one technique to implement ML.



Types of ML Algorithms


- Supervised Learning
 - trained with labeled data; including regression and classification problems
- Unsupervised Learning
 - trained with unlabeled data; clustering and association rule learning problems.
- Reinforcement Learning
 - no training data; stochastic
 Markov decision process; robotics and self-driving cars.


Machine Learning

Traditional Modeling

Machine Learning (Supervised Learning)

Inputs and Outputs

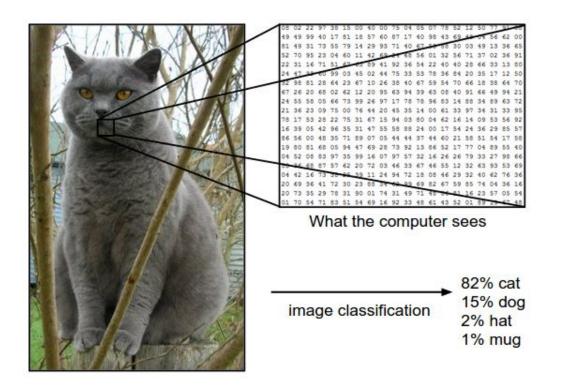
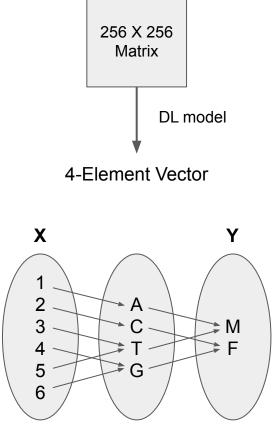
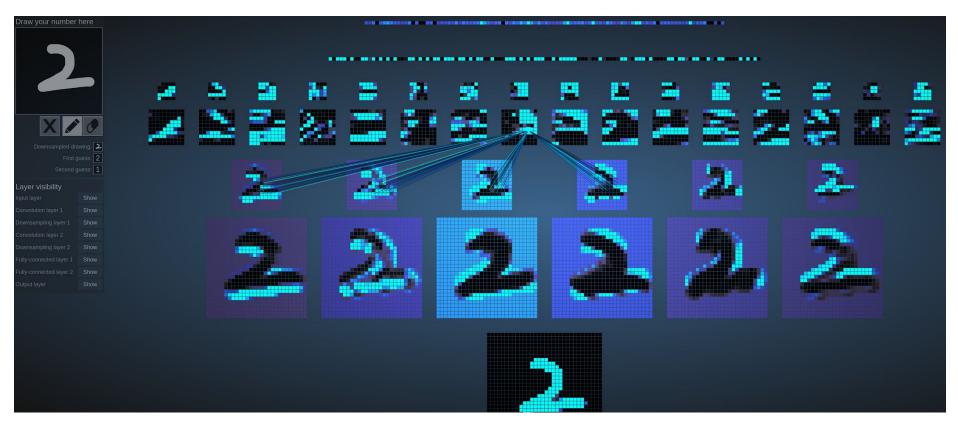
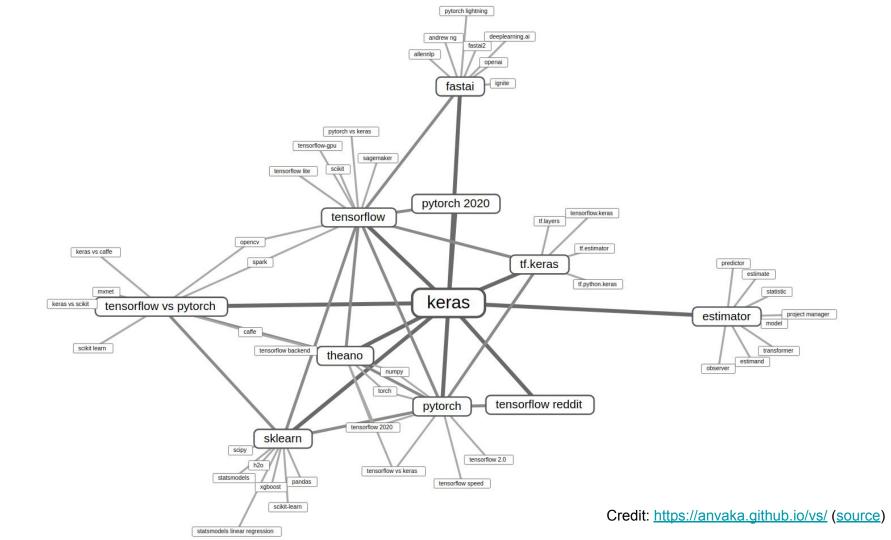




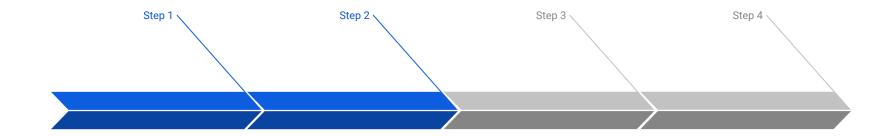
Image from the Stanford CS231 Course

With deep learning, we are searching for a **surjective** (or **onto**) function **f** from a set **X** to a set **Y**.

MNIST - CNN Visualization



(Image Credit: <u>http://scs.ryerson.ca/~aharley/vis/</u>)


CNN Explainer

(Image Credit: https://poloclub.github.io/cnn-explainer/)

Machine Learning Workflow with Keras

Prepare Train Data

The preprocessed data set needs to be shuffled and splitted into training and testing data.

Define Model

A model could be defined with Keras Sequential model for a linear stack of layers or Keras functional API for complex network.

Training Configuration

The configuration of the training process requires the specification of an optimizer, a loss function, and a list of metrics.

Train Model

The training begins by calling the fit function. The number of epochs and batch size need to be set. The measurement metrics need to be evaluated.